TOP TOP
一键检索,随时阅读,随时收藏 登录 注册
My JSP 'login_div.jsp' starting page
引导绑定成员馆

注册成功!

绑定图书馆后将获得以下功能

  • 1.向绑定的图书馆荐购图书
  • 2.查看图书在图书馆的馆藏信息
  • 3.借阅图书馆的电子书并下载到移动端进行全文阅读
展开引导图▼

深度学习

作者:(美)伊恩·古德费洛//(加)约书亚·本吉奥//亚伦·库维尔
译者:赵申剑//黎彧君//符天凡//李凯

ISBN:9787115461476

单价:168.0

出版社:人民邮电出版社

出版年月:2017-08-01 00:00:00.0

图书分类:科学技术

分类号: TP181

语种:中文

页数:500

装帧:平装

开本:16开

读者对象:本书适用于机器学习人员

展开▼

评分:4.6

(本馆/总:0/22人荐购)

目录

第1章 引言
1.1 本书面向的读者
1.2 深度学习的历史趋势
1.2.1 神经网络的众多名称和命运变迁
1.2.2 与日俱增的数据量
1.2.3 与日俱增的模型规模
1.2.4 与日俱增的精度、复杂度和对现实世界的冲击
第1部分 应用数学与机器学习基础
第2章 线性代数
2.1 标量、向量、矩阵和张量
2.2 矩阵和向量相乘
2.3 单位矩阵和逆矩阵
2.4 线性相关和生成子空间
2.5 范数
2.6 特殊类型的矩阵和向量
2.7 特征分解
2.8 奇异值分解
2.9 Moore-Penrose伪逆
2.10 迹运算
2.11 行列式
2.12 实例:主成分分析
第3章 概率与信息论
3.1 为什么要使用概率
3.2 随机变量
3.3 概率分布
3.3.1 离散型变量和概率质量函数
3.3.2 连续型变量和概率密度函数
3.4 边缘概率
3.5 条件概率
3.6 条件概率的链式法则
3.7 独立性和条件独立性
3.8 期望、方差和协方差
3.9 常用概率分布
3.9.1 Bernoulli分布
3.9.2 Multinoulli分布
3.9.3 高斯分布
3.9.4 指数分布和Laplace分布
3.9.5 Dirac分布和经验分布
3.9.6 分布的混合
3.10 常用函数的有用性质
3.11 贝叶斯规则
3.12 连续型变量的技术细节
3.13 信息论
3.14 结构化概率模型
第4章 数值计算
4.1 上溢和下溢
4.2 病态条件
4.3 基于梯度的优化方法
4.3.1 梯度之上:Jacobian和Hessian矩阵
4.4 约束优化
4.5 实例:线性最小二乘
第5章 机器学习基础
5.1 学习算法
5.1.1 任务T
5.1.2 性能度量P
5.1.3 经验E
5.1.4 示例:线性回归
5.2 容量、过拟合和欠拟合
5.2.1 没有午餐定理
5.2.2 正则化
5.3 超参数和验证集
5.3.1 交叉验证
5.4 估计、偏差和方差
5.4.1 点估计
5.4.2 偏差
5.4.3 方差和标准差
5.4.4 权衡偏差和方差以最小化均方误差
5.4.5 一致性
5.5 最大似然估计
5.5.1 条件对数似然和均方误差
5.5.2 最大似然的性质
5.6 贝叶斯统计
5.6.1 最大后验(MAP)估计
5.7 监督学习算法
5.7.1 概率监督学习
5.7.2 支持向量机
5.7.3 其他简单的监督学习算法
5.8 无监督学习算法
5.8.1 主成分分析
5.8.2 k均值聚类
5.9 随机梯度下降
5.10 构建机器学习算法
5.11 促使深度学习发展的挑战
5.11.1 维数灾难
5.11.2 局部不变性和平滑正则化
5.11.3 流形学习
第2部分 深度网络:现代实践
第6章 深度前馈网络
6.1 实例:学习XOR
6.2 基于梯度的学习
6.2.1 代价函数
6.2.2 输出单元
6.3 隐藏单元
6.3.1 整流线性单元及其扩展
6.3.2 logistic sigmoid与双曲正切函数
6.3.3 其他隐藏单元
6.4 架构设计
6.4.1 万能近似性质和深度
6.4.2 其他架构上的考虑
6.5 反向传播和其他的微分算法
6.5.1 计算图
6.5.2 微积分中的链式法则
6.5.3 递归地使用链式法则来实现反向传播
6.5.4 全连接MLP中的反向传播计算
6.5.5 符号到符号的导数
6.5.6 一般化的反向传播
6.5.7 实例:用于MLP训练的反向传播
6.5.8 复杂化
6.5.9 深度学习界以外的微分
6.5.10 高阶微分
6.6 历史小记
第7章 深度学习中的正则化
7.1 参数范数惩罚
7.1.1 L2参数正则化
7.1.2 L1正则化
7.2 作为约束的范数惩罚
7.3 正则化和欠约束问题
7.4 数据集增强
7.5 噪声鲁棒性
7.5.1 向输出目标注入噪声
7.6 半监督学习
7.7 多任务学习
7.8 提前终止
7.9 参数绑定和参数共享
7.9.1 卷积神经网络
7.10 稀疏表示
7.11 Bagging和其他集成方法
7.12 Dropout
7.13 对抗训练
7.14 切面距离、正切传播和流形正切分类器
第8章 深度模型中的优化
8.1 学习和纯优化有什么不同
8.1.1 经验风险最小化
8.1.2 代理损失函数和提前终止
8.1.3 批量算法和小批量算法
8.2 神经网络优化中的挑战
8.2.1 病态
8.2.2 局部极小值
8.2.3 高原、鞍点和其他平坦区域
8.2.4 悬崖和梯度爆炸
8.2.5 长期依赖
8.2.6 非精确梯度
8.2.7 局部和全局结构间的弱对应
8.2.8 优化的理论限制
8.3 基本算法
8.3.1 随机梯度下降
8.3.2 动量
8.3.3 Nesterov动量
8.4 参数初始化策略
8.5 自适应学习率算法

展开▼

内容简介

由美国伊恩·古德费洛、加拿大约书亚·本吉奥和加拿大亚伦·库维尔所著,赵申剑、黎彧君、符天凡和李凯共同翻译、张志华等审校的《深度学习》一书分为3个部分,第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《深度学习》这本书既可以被本科生或研究生用于规划其学术界或工业界生涯,也适用于希望在各种产品或平台上开始使用深度学习技术的软件工程师。作者在本书的配套网站上为读者和教师提供了补充资料。

展开▼

作者简介

符天凡,上海交通大学计算机系硕士研究生,研究方向为贝叶斯推断。

展开▼

相关图书

荐购本书

推荐等级:

确定 取消

加入书架:修改

确定 取消

加入书架:我想读这本书

确定 取消

分类:创建分类

确定 取消

分类:修改分类

确定 取消

分类:修改分类

确定 取消

个人笔记:我要写笔记

确定 取消

all rights reserved Powered by 浙江省新华书店集团有限公司 杭州爱书得科技有限公司()
浙B2-20110302号-馆员登录

置顶